SSSC Discovery Series NMR3

Pulse Sequences and Programming

Topics:

- 1. Pulse sequences
 - simple ¹H 1D experiment
 - ¹³C experiment
 - pulse building blocks: spin echo, bird, composite
 - APT experiment
 - Solvent suppression
 - DEPT experiment
 - COSY experiment
 - HMQC experiment
- 2. Pulse programs
 - Bruker pulse programming language and applications
 - Simple phase programming
 - Macros ... make the computer work for you!
 - Bruker automation programming and ...
- **no** quantum mechanics!

The Simple ¹H 1D Experiment

Equilibrium magnetisation

The Simple ¹H 1D Experiment

Equilibrium magnetisation

The Simple ¹H 1D Experiment

The Simple ¹³C 1D Experiment

Equilibrium magnetisation

		The	e Simple ¹³ C 1D Expe	riment	Current Da NAME EXFND PAGCND	ata Parameters 100mgSoAc 2 1
E C	169.925 169.724 169.337			20.471 20.388 20.388	Date_ Time INSTRUM	isition Parameters 20020121 14.13 spect 5 mm PA8B0 8B- 2909 65536 CDC13 8 4 30030.029 Hz 0.458222 Hz 1.0912244 sec 1149.4 16.650 usec 6.00 usec 300.00 K 3.0000000 sec 0.0300000 sec 0.00002000 sec
					NUC1 P1 F1 SF01 	CHANNEL f1 ====== 13C 5.10 usec -1.00 dB 125.7954618 MHz CHANNEL f2 waltz16 1H 70.00 usec -1.00 dB 14.00 dB 14.00 dB 14.00 dB 500.2320009 MHz essing parameters 32768 125.7829854 MHz EN 0 0.30 Hz 0 1.00 ot parameters 20.00 cm 10.00 cm 25209.17 Hz -1.962 pm -246.75 Hz 10.11898 pm/cm
ppm		150	100 50		HZCM	1272.79602 Hz/cm

шdd

Pulse Clusters Heteronuclear Coupled Spin Echo

¹H
$$(\pi/2)_{-x}$$
 — τ — π_{-x} — τ — $(\pi/2)_{-x}$

For an off-resonance pulse, ¹H coupled to ¹³C (a doublet in this case):

No matter what the chemical shift or the value of τ , the vector ends up in the same spot. This is a 'building block' of many nmr pulse sequences .. used to get rid of chemical shift effects. The two coupling vectors are said to 'refocus' along the -y axis.

Pulse Clusters Homonuclear Coupled Spin Echo

¹H
$$(\pi/2)_{-x}$$
 — τ — π_{-x} — τ — $(\pi/2)_{-x}$

For an off-resonance pulse, ¹H coupled to ¹H (a doublet in this case):

In this case the spin labels are swapped after the π pulse. The chemical shift ends up along the -y axis as in the heteronuclear spin echo case but the coupling vectors do not refocus.

Pulse Clusters Composite pulses

Pulse Clusters Composite pulses

Composite 180° pulses to cancel offset effects:

90°(x)180°(y)90°(x)

90°(x)200°(y)80°(-y)200°(y)90°(x)

Composite pulses to remove phase distortion:

 $385^{\circ}(x)320^{\circ}(-x)25^{\circ}(x)$ (composite 90° pulse)

336°(x)246°(-x)10°(y)74°(-y)10°(y)246°(-x)360°(x) (composite 180° pulse)

(continued next page)

Pulse Clusters BIRD pulses (Bilinear Rotation and Decoupling)

Pulse Clusters TANGO pulses (Testing for Adjacent Nuclei with a Gyration Operator)

¹H 135°(-x) τ — 180°(-x) — τ — 45°(-x)

¹³C — 180°(x) — —

 $\tau = 1/(2^{1}J)_{CH}$

(continued next page)

Pulse Clusters TANGO pulses

 $\tau = 1/J$

For a singlet (quaternary carbon) assuming an on-resonance pulse:

For a doublet (CH), on-resonance pulse:

For a triplet (CH₂), on-resonance pulse:

For a doublet (CH), off-resonance pulse:

					СН		CH ₃	NAME EXPNO PRODNO F2 - ACQU Date_ Time INSTRUM	Jata Parameters test 2 1 Jisition Parameters 20070220 9.32 spect 5 mn TXI 1H-13 jmod 66536 CCC13 74 4 30030.029 Hz 0.45H222 Hz 1.0912410 sec 16384 16.650 usec 6.00 usec 295.8 K 145.0000000 sec 0.00898655 sec 0.00007783 sec 0.0000000 sec 0.0050000 sec
n na	Manananan Manananan	uliped a subsection of the sub	randywniad pyraniadaardailan	alahanahantikananahanah	1477-144760 (4479600-9460-9470-94796494	langer of the states of the st	hardenen and hard and	Mahand	CHANNEL f1 13C
								P1 p2	14.00 usec 28.00 usec
								PL1	-3.00 dB
	_							SF01	125.8206594 MHz
	C				l l				CHANNEL f2 =======
	Ŭ					•		CPOPRG2	waltz16
								NUC2	18
						H ₂		PCP02 PL2	80.00 usec 0.50 dB
						1 ₂		PL12	18.14 08
						2		SF02	500.3320013 MHz
								F2 - Pror	cessing parameters
								SI	32768
								SF	125.8080790 MHz
								NDN 558	EM
								LB	3.00 Hz
								GB	٥
								PC	1.40
								1D NMR n	lot parameters
								CX	20.00 cm
								CY	12.50 CM
								F1P F1	215.000 ppm 27048.74 Hz
								F2P	- <u>5</u> .000 ppm
								F2	-629.04 Hz
ppm 200	175	150	125	100	75	50	25	O PPNDM HZCN	11.00000 ррт/ст 1383.88892 Hz/ст
								HZUM	1303.00092 HZ/CM

Solvent Suppression

Presaturation:

During the relaxation delay a long, low-power pulse is issued at the solvent frequency causing saturation of the solvent resonance and considerably reducing its signal amplitude. Since the low power pulse is relatively long its exitation bandwidth is very narrow and excites only the solvent resonance.

Not a good choice when exchangeble protons are to be observed.

Solvent Suppression

Watergate (WATER suppression by GrAdient Tailored Exitation:

An example of a class of pulse clusters called binomials ... in this case 3,9,19,19,9,3

Solvent Suppression

This is simply two Watergates in a row. The advantage of doing this experiment is that baseline distortion is much reduced.

The DEPT Experiment (Distortionless Enhancement by Polarization Transfer)

Must use quantum mechanically derived *product operators* to analyse this pulse sequence.

The COSY Experiment (Correlation Spectroscopy)

¹H
$$\pi/2 - t_1 - \pi/2$$

This deceptively simple pulse sequence cannot be analysed using the vector model ... quantum mechanical methods must be used.

 t_1 is a variable time interval. Multiple experiments are done, acquiring data that differ only by the variable time interval, t_1 .

The HETCOR Experiment (Heteronuclear Correlation Spectroscopy)

 t_1 – variable time delay $t - 1/(2J_{CH})$

¹³C detected .. not used any more .. HMQC or HSQC more sensitive.

The HMQC Experiment (Heteronuclear Multiple Quantum Coherence)

This is a so-called 'inverse detected' experiment. Instead of recording the signal from the ¹³C nuclei, the ¹H signal is acquired. Maximum sensitivity achieved using an inverse probe.

Can only use quantum mechanics to understand this pulse sequence.

Bruker spectrometers run pulse programs in the pulse programmer located in the console. The pulse programmer is actually a specialized computer which is built to allow very high speed switching of power levels and accurate timing of pulse lengths and delays.

The source code (that is, the human readable code) for the program is located on the workstation and can be edited there, if need be. Once the program is edited it is compiled on the workstation and the binary code is sent to the pulse programmer for execution. So, when an experiment is being run the pulse program is not actually executing on the workstation but rather in the console.

- π/2 τ \bigwedge $^{1}\mathsf{H}$

 τ – relaxation delay

;zg ;avance-version (02/05/31) ;1D sequence

#include <Avance.incl>

1	ze	;zero the memory
2	d1	;relaxation delay time
	p1 ph1	;pulse, phase from ph1 list
	go=2 ph31	;acquire data, phase from list
	30m mc #0 to 2 F0(zd)	;write to disk
ex	kit	

ph1=0 2 2 0 1 3 3 1 ;pulse phase program ph31=0 2 2 0 1 3 3 1 ;receiver phase program

;pl1 : f1 channel - power level for pulse (default)
;p1 : f1 channel - high power pulse
;d1 : relaxation delay; 1-5 * T1
;NS: 1 * n, total number of scans: NS * TD0

This part gives some information about how to set up the experiment

;jmod ;avance-version (02/05/31) ;J-modulated spin-echo for X-nuclei coupled to H-1 to determine ; number of attached protons

#include <Avance.incl> #include <Delay.incl>

```
"p2=p1*2"
```

```
"d20=1s/(cnst2*cnst11)"
```

1 ze	
30m pl12:f2	;set power level for decoupler
2 d1	
4u do:f2	;decoupler off
pl phl	;carbon 90° pulse phase ph1
d20	;1/2J delay time
(p2 ph2):f1	;carbon 180° pulse on transmitter (f1) phase 2
d20 cpd2:f2	;1/2J delay time, turn on 1H decoupler
go=2 ph31	;acquire data phase 31, loop back to 2
30m mc #0 to 2 F0(zd)	;save data to disk
d20 do:f2	;decoupler off
exit	;finish
ph1=00001111222	2 3 3 3 3
ph2=02131320132	
ph31=0 0 2 2 1 1 3 3	

;pl1 : f1 channel - power level for pulse (default) ;pl12: f2 channel - power level for CPD/BB decoupling ;p1 : f1 channel - 90 degree high power pulse ;p2 : f1 channel - 180 degree high power pulse ;d1 : relaxation delay; 1-5 * T1 ;d20: 1/(J(XH)) X, XH2 positive, XH, XH3 negative ; 1/(2J(XH)) X only ;cnst2: = J(XH) ;cnst11: = 1 X, XH2 positive, XH, XH3 negative ; 2 X only ;NS: 4 * n, total number of scans: NS * TD0 ;DS: 4 ;cpd2: decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

Low power cw pulse

;zgpr ;avance-version (02/05/31) ;1D sequence with f1 presaturation

#include <Avance.incl>

"d12=20u"

1 ze

2 d12 pl9:f1;short delay, set transmitter power level to pl9d1 cw:f1 ph29;relaxation delay, cw decouple pulse on transmitter channel4u do:f1;short delay, turn off decouple pulsesd12 pl1:f1;short delay, set transmitter power levelp1 ph1;high power transmitter pulsego=2 ph31;acquire data30m mc #0 to 2 F0(zd);save data

ph1=0 2 2 0 1 3 3 1 ph29=0 ph31=0 2 2 0 1 3 3 1

;pl1 : f1 channel - power level for pulse (default) ;pl9 : f1 channel - power level for presaturation ;p1 : f1 channel - 90 degree high power pulse ;d1 : relaxation delay; 1-5 * T1 ;d12: delay for power switching [20 usec] ;NS: 1 * n, total number of scans: NS * TD0

;hmbcgpndqf ;HMBC #include <avance.incl> #include <grad.incl></grad.incl></avance.incl>	¹³ C	90°	90°	_
"p2=p1*2"	¹ H d6	d0 d16 d1	16 d0 d16	Λ Λ Λ Λ Λ
"d0=3u"	90°	180°		
"d6=1s/(cnst13*2)"	Gradient pulses		3	_
<pre>1 ze 2 d1 3 p1 ph1 d6 p3:f2 ph3 d0 50u UNBLKGRAD p16:gp1 d16 p2 ph2 50u p16:gp2 d16 d0 p3:f2 ph4 4u p16:gp3 d16 4u BLKGRAD go=2 ph31 d1 mc #0 to 2 F1QF(id0) exit</pre>	;90° f2 channel high ;variable delay ;turn on gradient ar ;gradient pulse 1 ;delay for recovery ;180° f1 channel pu ;50 usec delay ;gradient pulse 2 ;delay for recovery ;variable delay ;90° f2 channel high ;4 usec delay ;gradient pulse 3 ;delay for recovery ;4 usec delay, turn ;data acquisition	of long-range couplings power pulse mplifier from grad pulse llse from grad pulse h power pulse		

ph2=0 0 2 2 ph3=0.2ph4=00002222 ph31=0 2 0 2 2 0 2 0 ;pl1 : f1 channel - power level for pulse (default) ;pl2 : f2 channel - power level for pulse (default) ;p1 : f1 channel - 90 degree high power pulse ;p2 : f1 channel - 180 degree high power pulse ;p3 : f2 channel - 90 degree high power pulse ;p16: homospoil/gradient pulse ;d0 : incremented delay (2D) [3 usec] ;d1 : relaxation delay; 1-5 * T1 ;d6 : delay for evolution of long range couplings ;d16: delay for homospoil/gradient recovery ;cnst13: = J(XH) long range (in0: 1/(2 * SW(X)) = DW(X)):nd0: 2 :NS: 2 * n :DS: 16 ;td1: number of experiments ;FnMODE: QF ;use gradient ratio: qp 1 : qp 2 : qp 3 50: 30: 40.1 for C-13 70: 30: 50.1 for N-15 ;for z-only gradients: ;gpz1: 50% for C-13, 70% for N-15 ;qpz2: 30% ;gpz3: 40.1% for C-13, 50.1% for N-15 ;use gradient files: ;gpnam1: SINE.100 ;gpnam2: SINE.100

;gpnam3: SINE.100

ph1=0

Phase Programming

When using quadrature detection, two receivers are used. If they do not provide identical signals then there will be artifacts introduced into the spectrum. A dc offset will result in a 'peak' at the center of the spectrum and if the detectors are other than exactly 90° out of phase this will result in 'ghost' peaks mirrored through the center of the spectrum.

Use of a phase program will help to get rid of these unwanted artifacts. Actually, phase programming is much more general than this .. it is used to select wanted peaks and suppress unwanted peaks for a particular pulse sequence. The peak selection rules are, for the most part, complex and require at least a rudimentary understanding of the quantum mechanics of nmr spectroscopy so we will look only at the very simplest of phase programs here.

The CYCLOPS phase program is x, y, -x, -y for pulses and x, y, -x, -y for the receiver phase. The opposite phases, say x and -x, will act to cancel any dc offset effects and receiver phase effects. If you watch the acquistion of fid's you can see the effect of the phase program as sequential fid's are accumulated. The fid's move up and down ... this is the dc offsets being cancelled.

Macro Programming

Macros are basically simple shortcuts for doing repetitive tasks withing Xwinnmr. If there is a series of commands that you type regularly you can put them into a macro and simply type the name of the macro. For example, one often types 'ef', 'apk', 'abs' in that order to Fourier transform, phase correct and baseline correct the spectrum. These can easily be put into a macro called 'proc' (or anything that you want) and then simply typing 'proc' will execute the commands.

To edit a macro type 'edmac' and either select an existing macro to edit or give a new name for a new macro. Be a bit careful that you don't give the macro the name of an already existing command. For example, you would not want to call your new macro 'ef' since this is the internal Fourier transform command.

The creative programmer can use these macros to advantage and make the computer work for her.

Pulse programs are compiled and run in the pulse programmer which directly controls the low level operation of the nmr hardware.

Automation programs are compiled and run in the workstation and are capable of higher level functions such as opening windows on the workstation screen and interacting with the operator. These are very powerful programs capable of automating many tasks. If you can think of something that you want to automate .. it can probably be done. Examples of automation programs:

- multizg: for running a series of two or more experiments unattended
- multi_zgvt: for running a series of experiments at different temperatures
- setproj: for setting reasonable projection files for 2D experiments rather than using edg
- paropt: for optimizing an acquisition parameter
- multiefp: for performing the same fourier transform and phase correction on a series of experiments

*/

*/

****	multizg ********	18.05.2000 */ *********************************	**/
* * ****	Short Descrip Performs mul		*/
* *	Keywords : serial acquisit	*/	,
**** *	Description/U		**/
*		am performs multiple acquisitions on	*/
*		pnos. If datasets do not yet exist, the	*/
* *	current datas	et and its parameters are copied. If the ady exist, then the experiments are */	*/
*	executed as t		*/
*		eriment time is estimated and printed out.	*/
*		of experiments to be performed can be	*/
*	specified on t	he command line :	*/
*		ultizg <no experiments="" of=""></no>	*/
****		***************************************	**/
*	Author(s) :	*/	
* *	Name	: Rainer Kerssebaum */ : Bruker Analytik */	
*	Organisation Email	: Bruker Analytik */ : rainer.kerssebaum@bruker.de	*/
****		***************************************	'/ **/
*	Name	Date Modification: */	1
*	rke	941207 created	
*	eng	000327 switch ZGSAFETY off if on */	
*	eng	000518 PathSystemTemp instead o	f /tmp
****	******	******	

char *envpnt, tmpfile[PATH_MAX]; int startExpno; int expTime, zgsafety; static void PrintExpTime();

GETCURDATA;

```
startExpno = expno;
if (strlen(cmd) == 0)
{
  i1 = 10:
  GETINT("Enter number of experiments : ",i1);
}
else
{
  if (1 != sscanf(cmd, "%d", &i1))
  {
       STOPMSG("illegal input");
  }
}
expTime = 0;
TIMES(i1)
  SETCURDATA;
  expTime += CalcExpTime() + 4;
  IEXPNO;
END
DEXPNO;
PrintExpTime(expTime, i1);
(void) sprintf (tmpfile,"%s/expt",PathSystemTemp());
(void) remove (tmpfile);
/* Turn zg safety off if on. Turn it back on at the end. */
envpnt = getenv("UXNMR SAFETY");
zgsafety = 0;
if(envpnt != NULL)
{
 if(strcmp(envpnt, "on") == 0)
 {
  zgsafety = 1;
  CPR exec("env set UXNMR SAFETY=off", WAIT TERM);
 }
}
expno = startExpno;
SETCURDATA;
```

TIMES(i1)

(void) sprintf(text,"running experiment # %d",loopcount1+1); Show_status(text); sleep(4); ZG; IEXPNO; END DEXPNO;

if(zgsafety == 1)
 CPR_exec("env set UXNMR_SAFETY=on", WAIT_TERM);

QUITMSG("--- multizg finished ---");

Projects

The Jmodulation experiment is usually done this way:

 $\tau = 1/J$

We will alter the pulse program to do it this way to get exactly the same result.

Projects

The HMBC pulse program as supplied by Bruker will not do solvent suppression. We want to do an HMBC experiment on sucrose dissolved in D_20 . If we use the 'canned' pulse program supplied by Bruker there will be a large solvent ridge in the 2D spectrum and our sucrose peaks will be very small. Solvent suppression should reduce the size of the solvent peak and allow us to increase the receiver gain which will give much better cross peaks in the spectrum.

The technique is to cut-and-paste the presaturation portion of a regular 1D presaturation pulse program into the HMBC pulse program and run the experiment.

References (all available in the Natural Sciences library except *)

Introductory with little math:

*Bruker, BASH programming manuals Sanders and Hunter, Modern NMR Spectroscopy: A Guide for Chemists. Derome, Modern NMR Techniques for chemistry research.

Intermediate with math:

Levitt, *Spin Dynamics.* Keeler, *Understanding NMR Spectroscopy*.

Advanced .. lots of math:

Slichter, *Principles of Magnetic Resonance*. Ernst, Bodenhausen, Wokaun, *Principles of Nuclear Magnetic Resoance in One and Two Dimensions*.

Practical information:

*Braun, Kalinowski, Berger, 200 and More Basic NMR Experiments. Fukushima, Roeder, Experimental Pulse NMR; A Nuts and Bolts Approach.

My Website: http://chem4823.usask.ca/nmr/practical_nmr.html